Signal Processing for Sparse Discrete Time Systems
نویسنده
چکیده
In recent years compressive sampling (CS) has appeared in the signal processing literature as a legitimate contender for processing of sparse signals. Natural signals such as speech, image and video are compressible. In most signal processing systems dealing with these signals the signal is first sampled and later on compressed. The philosophy of CS however is to sample and compress the signal at the same time. CS is finding applications in a wide variety of areas including medical imaging, seismology, cognitive radio, and channel estimation among others. Although CS has been given a great deal of attention in the past few years the theory is still naive and its fullest potential is still to be proven. The research in CS covers a wide span from theory of sampling and recovery algorithms to sampling device design to sparse CS-based signal processing applications. The contributions of this thesis are as follows; (i) The analog-to-information converter (AIC) is the device that is designed to collect compressed samples. It is a replacement for the analog-to-digital converter in a traditional signal processing system. We propose a modified structure for the AIC which leads to reducing the complexity of the current design without sacrificing the recovery performance. (ii) Traditional parameter estimation algorithms such as least mean square (LMS) do not assume any structural information about the system. Motivated by the ideas from CS we introduce a number of modified LMS algorithms for the sparse channel estimation problem. Decimated LMS algorithms for the special case of frequency sparse channels are also given. (iii) At last we consider the problem of CS of two dimensional signals. The most straightforward approach is to first find the vector form of a two dimensional signal and then use traditional CS methods to collect the compressed samples. However, our approach samples all the columns of a two dimensional signal with the same measurement matrix. This leads to simplification of the sampling process and also enables us to perform parallel signal recovery.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملGrid Impedance Estimation Using Several Short-Term Low Power Signal Injections
In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...
متن کاملAutomatic generation of fast discrete signal transforms
This paper presents an algorithm that derives fast versions for a broad class of discrete signal transforms symbolically. The class includes but is not limited to the discrete Fourier and the discrete trigonometric transforms. This is achieved by finding fast sparse matrix factorizations for the matrix representations of these transforms. Unlike previous methods, the algorithm is entirely autom...
متن کامل